

Computational approaches to understanding the evolution of sexual signal design

Yseult Héjja-Brichard

University of Maryland, Baltimore County

Sexual selection and Assortative mating

Powell et al 2020

Why do animals choose certain mates?

Can we identify those features?

Darters

Assortative mating in Etheostoma

Mate preference paradigm

12 papers + 5 unpublished datasets (2010-2023)21 species of *Etheostoma*14 different pairs of speciesAllopatric and sympatric populations

Héjja-Brichard, Renoult, Mendelson, in revision, Evolution

Assortative mating in Etheostoma

Preference for conspecifics:

- No effect of sex
- No effect of geography

Overall effect size of medium strength (*r* = 0.3213)

Héjja-Brichard, Renoult, Mendelson, in revision, Evolution

Assortative mating in Etheostoma

What drives a preference for conspecifics? What signals matter? When does geography matter?

Héjja-Brichard, Renoult, Mendelson, in revision, Evolution

Sam Hulse

Astrapias

Standardwing Bird-of-Paradise

timlaman.com

Fleishman et al, 2022

T. Moran, 1907

Closer to natural statistics More efficiently processed Human pattern preferences are consistent with an information-theoretic hypothesis of signal evolution

Héjja-Brichard et al., bioRxiv, 2023

Endler & Basolo, 1998; Barlow, 1961; Renoult & Mendelson, 2019

Click on the target as fast as possible

Click on the target as fast as possible

Héjja-Brichard et al., bioRxiv, 2023

Compare the patterns in the two circles, which one do you prefer?

Héjja-Brichard et al., bioRxiv, 2023

Camouflage patterns could serve as evolutionary precursors of sexual signals

through the exploitation of processing bias

Ranitomeya benedicta

Darters

Generative AI to study the evolution of sexual signal design in an ornamented fish

Using AI to apply the statistics of a species' habitat to its sexual signal design

E. caeruleum

Species-specific habitat: gravel

Foreign habitat: sand

Color control ON

Héjja-Brichard et al., bioRxiv 2023

Generative AI to study the evolution of sexual signal design in an ornamented fish

Using AI to apply the statistics of a species' habitat to its sexual signal design

Generative AI to study the evolution of sexual signal design in an ornamented fish

Using AI to apply the statistics of a species' habitat to its sexual signal design

"Perceptual distance", a measure of how similar are two images

$$d(x, x_0) = \sum_{l} \frac{1}{H_l W_l} \sum_{h, w} ||w_l \odot (\hat{y}_{hw}^l - \hat{y}_{0hw}^l)||_2^2$$

Zhang et al., 2018

Image dataset: 268 images covering 153 species

habitat similarity matrices based on written description

Darter vision: dichromatic model using cone sensitivities peaking at 525 and 603 nm (Gumm et al, 2012)

E. olmstedi

Females

Styled, gravel

Females

Styled, sand

Females

Led by Kara Million

Why do *fish* choose certain mates?

- Fish prefer signals that match the natural stats of their habitats
- Supports the efficient processing hypothesis
- In Etheostoma, dorsal fins may be the salient signal

E. variatum

DL is a transformative tool for visual ecology

Review paper: Renoult & Héjja-Brichard (*in prep*). Using artificial intelligence to advance the study of visual communication in ecology and evolution.

DL is a transformative tool for visual ecology

Review paper: Renoult & Héjja-Brichard (*in prep*). Using artificial intelligence to advance the study of visual communication in ecology and evolution.

Thank you!

Tamra Mendelson & Julien Renoult

Method to convert written descriptions to habitat dissimilarity matrices

Field guide descriptions