

Stereovision in primates A neuroimaging and psychophysics investigation

Yseult Héjja-Brichard ECO3 meeting – Feb, 1st

Stereovision: Outline

Which species? Which functions? Requirements?

How does the (primate) brain compute a depth percept? *Binocular disparities*

The case of motion in depth

Depth perception and natural statistics

Many species, of different taxa

... have stereovision

Stereopsis is useful for

- Estimating distances
- Breaking camouflage
- Perceiving motion in depth

→ Catching a (moving) target, manipulating tools

• Binocular overlap

- Good visual acuity in both eyes
- Accurate coordination between the eyes in all gaze directions
- Ability of the brain to fuse two slightly different retinal images

- Binocular overlap
- Good visual acuity in both eyes
- Accurate coordination between the eyes in all gaze directions
- Ability of the brain to fuse two slightly different retinal images

E	1	20/200
FР	2	20/100
тоz	3	20/70
LPED	4	20/50
РЕСГD	5	20/40
EDFCZP	6	20/30
FELOPZD	7	20/25
DEFPOTEC	8	20/20
LEFODPCT	9	
L E F O D P C T F D P L T C E O	9 10	

- Binocular overlap
- Good visual acuity in both eyes
- Accurate coordination between the eyes in all gaze directions
- Ability of the brain to fuse two slightly different retinal images

- Binocular overlap
- Good visual acuity in both eyes
- Accurate coordination between the eyes in all gaze directions
- Ability of the brain to fuse two slightly different retinal images

Crossed Disparity

Integration of binocular disparities

V1/V2/V3

Integration of binocular disparities

Parker, 2007

in most visual areas

E.g.: Hubel & Wiesel, 1970; DeAngelis et al., 1998; Janssen et al., 1999; Uka et al., 2000; Taira et al., 2000; Hinkle & Connor, 2001; Tsao et al., 2003; Durand et al., 2009; Likova and Tyler, 2007; Rokers et al., 2009; Sanaka & DeAngelis, 2014; Czuba et al., 2014; Kaestner et al., 2019

Integration of disparity gradients

Likova and Tyler, 2007; Rokers et al., 2009; Sanaka & DeAngelis, 2014; Czuba et al., 2014; Kaestner et al., 2019

Integration of disparity gradients

→ Barely studied: Main focus on 2D motion and on MT/hMT+ but some differences might exist

 \rightarrow Limited understanding of 3D motion despite its ecological relevance

Monkey fMRI

Stereomotion: CDOT processing

 \rightarrow Cyclopean StereoMotion area

Likova & Tyler, 2007

Héjja-Brichard, Y., *Rima, S.*, *Rapha, E.*, *Durand, J.-B.*, *Cottereau, B.R.* (2020). *Stereomotion* processing in the non-human primate brain. Cerebral Cortex.

Stereomotion: CDOT processing

 \rightarrow CSM area in macaque?

Likova & Tyler, 2007

Héjja-Brichard, Y., *Rima, S.*, *Rapha, E.*, *Durand, J.-B.*, *Cottereau, B.R.* (2020). *Stereomotion processing in the non-human primate brain. Cerebral Cortex.*

Experimental paradigm

BOLD fMRI: A quick overview

Surface projections

Volume

Projections on the individual surfaces

Projections on the individual surfaces

Projection on the F99 template: Overlap

Héjja-Brichard et al., 2020

Three areas with significant activations for CSM + tendency in the MT cluster (FST, MSTv)

One area found to respond exclusively to stereomotion

Similar networks for humans and macaques

Integration of disparity gradients

Spatial gradients

in most visual areas

E.g.: Hubel & Wiesel, 1970; DeAngelis et al., 1998; Janssen et al., 1999; Uka et al., 2000; Taira et al., 2000; Hinkle & Connor, 2001; Tsao et al., 2003; Durand et al., 2009;

Integration of disparity gradients

The brain network responding to spatial gradients is well known in macaques, so is the involvement of several human areas

What about an influence of natural statistics on spatial gradients processing?

Spatial gradients and statistical biases

Horizontal disparity

→ Binocular disparities are not randomly distributed in natural scenes

Sprague et al., 2015

Spatial gradients and statistical biases p = 0.007 V1 Normalized frequency Cell count -1.5 1.0 -1.0-0.50.0 0.5 Horizontal disparity (°) Horizontal disparity 0.5° 0 -0.5°

→ Binocular disparities are not randomly distributed in natural scenes

Sprague et al., 2015

Visual perception and natural statistics

Are statistical biases reflected at the level of visual perception in macaque?

Héjja-Brichard, Y., Bruzzone, S.E.P, Rapha, E., Durand, J.-B., Cottereau, B.R. (2019, September). Natural statistics influence depth perception. Predictive brain conference, Marseille.

Measuring corresponding points

Experimental procedure adapted from Cooper E. et al., 2011

Measuring corresponding points

Experimental procedure adapted from Cooper E. et al., 2011

Corresponding points location

Disparity (degrees)

Corresponding points location

Corresponding points location

Successful adaptation of the experiment to one macaque subject with a tilt reflecting natural statistics

Related research work

Disparity gradients x natural statistics x fMRI
 & Corresponding points experiment

Is there an influence of natural statistics within the cortical networks known to process binocular disparities ?

Related research work

- Disparity gradients x natural statistics x fMRI
 & Corresponding points experiment
- Symmetry processing

Audurier, Héjja-Brichard et al., in prep

- Modelling binocular disparities Chauhan, Héjja-Brichard, Cottereau, 2020
- Optic flow (fMRI & connectivity) Cottereau et al., 2017; De Castro et al., 2020
- ManyPrimates: Large-scale collaboration
- COS Ambassador: Open x Slow science

Thank you for your attention!

