# Deep Learning et al. Architecture and applications



02.11.2022 Mendelson Lab Meeting

### What is what?

#### **ARTIFICIAL INTELLIGENCE**

Programs with the ability to learn and reason like humans

#### **MACHINE LEARNING**

Algorithms with the ability to learn without being explicitly programmed

#### DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

# What is what?

#### Machine Learning



### **ARTIFICIAL INTELLIGENCE**

Programs with the ability to learn and reason like humans



Input





#### MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

#### DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data Feature extraction + Classification

# Deep learning: The different kinds

Many acronyms: what do they actually mean?

**ANN**: artificial NN / **DNN**: deep NN = generic terms



**CNN** or ConvNets: convolutional NN = most spread type of ANN, feedforward

**GAN**: generative adversarial network / **(V)AE**: (variational) autoencoder = generative algorithms that involve 2 NNs competing with each other to become more accurate in their predictions

**RNN**: recurrent NN = *temporal sequence data* (*e.g. language* →*translation*)

### ConvNets: Going into the details





# Convolution: .Multiplication of matrices



6



## Dense layers / Fully connected layers

Which high level features most strongly correlate to a particular class?



# Backpropagation: the training process

1.Forward pass





4. Updated weight = initial weight – learning rate x learning rule ('gradient')

# Deep learning: What for?

Tasks: classification, object detection, segmentation, individual identification (feature-based)

 → body posture and movement tracking, classification of behaviours
→ genomics (sequence prediction); pop genetics estimations



*Christin et al., 2019* 11

### Pose tracking



### Neural Style Transfer

NST = Process of using CNNs to render a content image in different styles



### Neural Style Transfer



### Neural Style Transfer



Colour control ON

# Deep learning: Further applications

- CamoGAN: exploiting GANs to simulate an evolutionary arms race between the camouflage of a synthetic prey and its predator (*Tálas et al., 2019*)
- ButterflyNet: using a CNN to provide a comprehensive quantification of visible phenotypic similarity and an objective test of taxonomic delimitation *(Cuthill et al., 2019)*
- VGG-Mandrill: estimating facial resemblance using a CNN and investigating its link with kin selection *(Charpentier et al., 2020)*
- Exploiting the similarities between artificial and biological neural networks

