Spatial and temporal integration of binocular disparities in the primate brain

Yseult Héjja-Brichard
June, 10th 2020

PhD supervisor: Benoit R. Cottereau

Jury

Claire Wardak Univ. de Tours
Peter Janssen KU Leuven
Kristine Krug Uni. of Oxford
Jean-Marc Devaud Univ. Paul Sabatier
Context of the thesis

Horizontal binocular disparities
Key ingredients for stereopsis

• Binocular overlap
• Good visual acuity in both eyes
• Accurate coordination between the eyes in all gaze directions
• Ability of the brain to fuse two slightly different retinal images
Key ingredients for stereopsis

• Binocular overlap
• Good visual acuity in both eyes
• Accurate coordination between the eyes in all gaze directions
• Ability of the brain to fuse two slightly different retinal images

Horizontal binocular disparities
Horizontal binocular disparities

Left

Right
Horizontal binocular disparities
Horizontal binocular disparities
Horizontal binocular disparities

- **Left**
- **Right**

TOP VIEW

Uncrossed disparity
Horizontal binocular disparities

Left

Right

TOP VIEW

Crossed Disparity
Integration of binocular disparities

uncrossed

crossed

Parker, 2007
Integration of binocular disparities

in most visual areas

E.g.: Hubel & Wiesel, 1970; DeAngelis et al., 1998; Janssen et al., 1999; Uka et al., 2000; Taira et al., 2000; Hinkle & Connor, 2001; Tsao et al., 2003; Durand et al., 2009; Likova and Tyler, 2007; Rokers et al., 2009; Sanaka & DeAngelis, 2014; Czuba et al., 2014; Kaestner et al., 2019
Integration of binocular disparities

Temporal gradients

t + t+1

in most visual areas

E.g.: Hubel & Wiesel, 1970; DeAngelis et al., 1998; Janssen et al., 1999; Uka et al., 2000; Taira et al., 2000; Hinkle & Connor, 2001; Tsao et al., 2003; Durand et al., 2009; Likova and Tyler, 2007; Rokers et al., 2009; Sanaka & DeAngelis, 2014; Czuba et al., 2014; Kaestner et al., 2019
Integration of binocular disparities

Spatial gradients

in most visual areas

E.g.: Hubel & Wiesel, 1970; DeAngelis et al., 1998; Janssen et al., 1999; Uka et al., 2000; Taira et al., 2000; Hinkle & Connor, 2001; Tsao et al., 2003; Durand et al., 2009; Likova and Tyler, 2007; Rokers et al., 2009; Sanaka & DeAngelis, 2014; Czuba et al., 2014; Kaestner et al., 2019
Integration of binocular disparities

Temporal gradients

\[t \rightarrow t+1 \]

Spatial gradients

in most visual areas

E.g.: Hubel & Wiesel, 1970; DeAngelis et al., 1998; Janssen et al., 1999; Uka et al., 2000; Taira et al., 2000; Hinkle & Connor, 2001; Tsao et al., 2003; Durand et al., 2009; Likova and Tyler, 2007; Rokers et al., 2009; Sanaka & DeAngelis, 2014; Czuba et al., 2014; Kaestner et al., 2019
Aims of the thesis

• Temporal integration of binocular disparities
 → Barely studied: Main focus on 2D motion but some differences might exist

• Spatial integration of binocular disparities
 → Influence of natural statistics
 → Link with perception?

Temporal gradients

[Diagram showing temporal gradients with time steps t and t+1]

Spatial gradients

[Diagram showing spatial gradients with an image]
Monkey fMRI
Methodological developments
Monkey fMRI

electrophysiology

fMRI

Homologies

Vanduffel et al., 2001
Monkey fMRI: Development

Macaque conditioning
Experimental setup
Pre-processing and data analysis

[Diagram of experimental setup with labels: Primate chair, Head-post, Coil, Screen, Scanner bore, Reward system, Video projector, Eye-tracker, Reward, Fixation, Time]
The very first study: Optic flow processing

Original Article

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoît R. Cottereau1,2, Andrew T. Smith3, Samy Rima1,2, Denis Fize4, Yseult Héjja-Brichard1,2, Luc Renaud5,6, Camille Lejards1,2, Nathalie Vayssière1,2, Yves Trotter1,2 and Jean-Baptiste Durand1,2

TR = 2s, 1 run = 7 cycles of 16TRs
The very first study: Optic flow processing

ORIGINAL ARTICLE

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoit R. Cottereau1,2, Andrew T. Smith3, Samy Rima1,2, Denis Fize4, Yseult Héjja-Brichard1,2, Luc Renaud5,6, Camille Lejards1,2, Nathalie Vayssièrè1,2, Yves Trotter1,2 and Jean-Baptiste Durand1,2
The very first study: Optic flow processing

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoit R. Cottereau¹², Andrew T. Smith³, Samy Rima¹², Denis Fize⁴, Yseult Héjja-Brichard¹², Luc Renaud⁵⁶, Camille Lejards¹², Nathalie Vayssière¹², Yves Trotter¹² and Jean-Baptiste Durand¹²
The very first study: Optic flow processing

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoit R. Cottereau\(^1,2\), Andrew T. Smith\(^3\), Samy Rima\(^1,2\), Denis Fize\(^4\), Yseult Héjja-Brichard\(^1,2\), Luc Renaud\(^5,6\), Camille Lejeard\(^1,2\), Nathalie Vayssière\(^1,2\), Yves Trotter\(^1,2\) and Jean-Baptiste Durand\(^1,2\)

Connectivity analyses

De Castro et al., in revision
Stereomotion

Stereomotion processing in the non-human primate brain

2D vs 3D motion

• 2D motion has been widely studied in MT/hMT+
 Huk & Heeger, 2002; Maunsell & Newton, 1987

• Much less is known about 3D motion processing
 Most studies focused on MT/hMT+
 Rokers et al., 2009 (ROI-based analysis)
 Sanaka & DeAngelis, 2014; Czuba et al., 2014

=> Limited understanding of 3D motion despite its ecological relevance
Stereomotion: CDOT processing

Likova & Tyler, 2007
Stereomotion: CDOT processing

→ CSM area in macaque?

Likova & Tyler, 2007

Kolster et al., 2014
Stereomotion: CDOT processing

→ CSM area in macaque?

Likova & Tyler, 2007

Kolster et al., 2014
Experimental paradigm

2 macaques
43 and 47 runs
BOLD signal
Experimental paradigm

Rima et al. (minor revisions)
Projection on the individual surfaces

Caret software
Projection on the individual surfaces

*Caret software
Projection overlap

Projection on the F99 template
ROI analyses in the volume

F99

CSM_{STS} CSM_{ITG} CSM_{PPC}

M01 M02 M01 M02 M01 M02

0.6 0.5

0.3 0.4

0.2 0.3

0 0.5

PSC PSC PSC

CSM TS CSM TS CSM TS CSM TS
ROI-based analyses

Kolster et al. 2014
ROI-based analyses

Early Visual Areas

MT cluster
MT / V5
V4t
MSTv
FST

M02

V1 V2 V3 V4 V3A

ΔPSC

MT cluster

V4t MT MSTv FST

ΔPSC
Monocular motion sensitivity
Temporal integration?

• Three areas with significant activations for CSM: CSM_{STS}, CSM_{ITG}, CSM_{PPC}
• Tendency observed in the MT cluster (FST, MSTv)
• One area was found to respond exclusively to stereomotion
Temporal integration?

- Three areas with significant activations for CSM: CSM_{STS}, CSM_{ITG}, CSM_{PPC}
- Tendency observed in the MT cluster (FST, MSTv)
- One area was found to respond exclusively to stereomotion

Likova & Tyler 2007
Temporal integration?

- Three areas with significant activations for CSM: CSM_{STS}, CSM_{ITG}, CSM_{PPC}
- Tendency observed in the MT cluster (FST, MSTv)
- One area was found to respond exclusively to stereomotion

Likova & Tyler 2007
Rokers et al., 2009
Temporal integration?

• Three areas with significant activations for CSM: CSM$_{STS}$, CSM$_{ITG}$, CSM$_{PPC}$
• Tendency observed in the MT cluster (FST, MSTv)
• One area was found to respond exclusively to stereomotion

Likova & Tyler 2007
Rokers et al., 2009
Kaestner et al. 2019
Spatial Gradients & Natural Statistics

Spatial integration of binocular disparities and orientation biases
Spatial gradients processing

• The brain network responding to spatial gradients is well known in macaques

 Janssen et al., 1999, 2000, 2001; Taira et al., 2000; Tsutsui et al., 2002;
 Hinkle & Connor, 2002; Nguyenkin & DeAngelis, 2003

• And so is the involvement of some human areas (V3A, V3B/KO, hMT+, LOC)

 Chandrasekaran et al., 2007;
 Murphy, Ban, Welchman, 2013; Ban & Welchman, 2015
Spatial gradients processing

• The brain network responding to spatial gradients is well known in macaques

• And so is the involvement of some human areas (V3A, V3B/KO, hMT+, LOC)

 Chandrasekaran et al., 2007; Murphy, Ban, Welchman, 2013; Ban & Welchman, 2015

What about an influence of natural statistics within those networks?
Spatial gradients and statistical biases

Sprague et al., 2015
Spatial gradients and statistical biases

Sprague et al., 2015
Spatial gradients and statistical biases

Sprague et al., 2015
Spatial gradients and statistical biases
Visual perception and natural statistics

Are statistical biases reflected at the level of visual perception in macaque?
Measuring corresponding points

Experimental procedure adapted from Cooper E. et al., 2011
Corresponding points location

S1 \(\theta = 4.312^\circ \)

S2 \(\theta = 3.5386^\circ \)
Corresponding points location

Eccentricity (degrees)

Disparity (degrees)

Angle value (degrees)
Corresponding points location

Eccentricity (degrees)

Disparity (degrees)

Angle value (degrees)

M1
\[\theta = 3.01^\circ \]

S2
\[\theta = 3.5386^\circ \]
From perception to cortical networks?

Is there an influence of natural statistics within the cortical networks known to process binocular disparities?
Experimental paradigm

2 macaques
BOLD signal
49 runs (26 ‘S’ and 23 ‘T’)
79 runs (33 ‘S’ and 46 ‘T’)

8TRs Blank
8TRs Correlated ‘GS’
8TRs Correlated ‘nGS’
8TRs Uncorrelated ‘U’
Correlated vs. Decorrelated
Orientation biases?
Orientation biases?
Orientation biases?

Rima et al. (minor revisions)

And nothing in M02!
Spatial integration and natural stats?

• Successful adaptation of the experiment to one macaque subject with a tilt reflecting natural statistics

• A cortical network responding to correlated disparities congruent with the literature

• Inconclusive results regarding the possibility of an encoding bias towards more frequent 3D orientations
Discussion

What did we learn about the integration of binocular disparities?
Integration of binocular disparities

Temporal gradients

Spatial gradients

$V1/V2/V3$

$V3A$

$MT/MST/hMT+$

$V4/hV4$

IT

IPS
Summary of the main results

• Temporal integration of binocular disparities
 • The case of cyclopean stereomotion
 → Human and macaque seem to process CSM in a similar manner

 Likova & Tyler, 2007; Rokers et al., 2009; Kaestner et al.; 2019
Summary of the main results

• Temporal integration of binocular disparities
 • The case of cyclopean stereomotion
 → Human and macaque seem to process CSM in a similar manner
 Likova & Tyler, 2007; Rokers et al., 2009; Kaestner et al.; 2019

• Influence of natural statistics
 • Cortical processing of spatial gradients and 3D orientation biases: Nope! or Nope?
 • Visual perception bias and interspecies comparison
 Cooper and Pettigrew, 1991; Cooper E. et al., 2011
The PIP cluster: An overlap?

Functional dissociation

Stereomotion

Disparity gradients

Héjja-Brichard et al., 2020

Taira et al., 2000;
Tsutsui et al., 2002;
Durand et al., 2007

Retinotopic dissociation

Rima et al., under review
Future directions

• Stereomotion: other cues and fMRI recording
 • A specific role for the area MT?
 Sanada & DeAngelis, 2014; Czuba et al., 2014; Joo et al., 2016

• Better understanding of the link between 3D statistics in natural scenes and visual processing
 Chauhan, Héjja-Brichard, & Cottereau (under review)
Monkey fMRI
Homologies

Differences
Thank you for your attention!
Appendix
Stimuli: full-field counter phasing (10Hz) checkerboards (40°, 16 sectors) displayed at full contrast, for 4s followed by a 30s blank
One scan = 6 cycles of 34 seconds (total duration: 204s)

<table>
<thead>
<tr>
<th>Subject</th>
<th>α_1</th>
<th>α_2</th>
<th>β_1</th>
<th>β_2</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>2.8572</td>
<td>29.9973</td>
<td>0.9267</td>
<td>2.6957</td>
<td>10.0000</td>
</tr>
<tr>
<td>M02</td>
<td>4.7199</td>
<td>24.8772</td>
<td>1.2660</td>
<td>1.3247</td>
<td>6.3917</td>
</tr>
</tbody>
</table>
Results: Projections in the volume
Evolution of polar angle gradients between V3A and LIPvt → robust identification of a succession of gradient reversals → borders shared by those visuotopic areas.

Cf. Arcaro et al., 2011
Horopter: Results

Proportion of rightward motion vs. Line segment separation (degrees)

- Ecc = -0.7
- Ecc = -0.3
- Ecc = -0.1
- Ecc = 0
- Ecc = 1
- Ecc = 3
- Ecc = 7

PSE values indicated for each condition.
Results for 8 human observers

Eccentricity (degrees) vs. Disparity (degrees) for each observer:

- S1 $\theta = 3.927^\circ$
- S2 $\theta = 3.538^\circ$
- S3 $\theta = 7.178^\circ$
- S4 $\theta = 5.712^\circ$
- S5 $\theta = 4.312^\circ$
- S6 $\theta = 4.015^\circ$
- S7 $\theta = 2.620^\circ$
- S8 $\theta = 5.210^\circ$
Horopter: Observers’ characteristics

Optimal shear angle \(\vartheta = 2 \tan^{-1} \frac{I}{2h} \)

<table>
<thead>
<tr>
<th>Subject</th>
<th>IOD (cm)</th>
<th>Eyes height (cm)</th>
<th>Optimal shear angle (degrees)</th>
<th>Shear angle all sessions (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>6.15</td>
<td>153.0</td>
<td>2.3028</td>
<td>3.927</td>
</tr>
<tr>
<td>S2</td>
<td>6.30</td>
<td>171.5</td>
<td>2.1045</td>
<td>3.5386</td>
</tr>
<tr>
<td>S3</td>
<td>6.55</td>
<td>166.5</td>
<td>2.2537</td>
<td>7.1776</td>
</tr>
<tr>
<td>S4</td>
<td>6.15</td>
<td>157.5</td>
<td>2.237</td>
<td>5.7120</td>
</tr>
<tr>
<td>S5</td>
<td>6.70</td>
<td>169.5</td>
<td>2.2645</td>
<td>4.3118</td>
</tr>
<tr>
<td>S6</td>
<td>6.90</td>
<td>163.5</td>
<td>2.4176</td>
<td>4.0147</td>
</tr>
<tr>
<td>S7</td>
<td>6.03</td>
<td>156.0</td>
<td>2.2144</td>
<td>2.6200</td>
</tr>
<tr>
<td>S8</td>
<td>6.30</td>
<td>169.0</td>
<td>2.1356</td>
<td>5.2106</td>
</tr>
<tr>
<td>M1</td>
<td>3.14</td>
<td>38</td>
<td>4.8973</td>
<td>3.01</td>
</tr>
</tbody>
</table>
Selectivity profile along the STS