

Spatial and temporal integration of binocular disparities in the primate brain

Yseult Héjja-Brichard June, 10th 2020

PhD supervisor: Benoit R. Cottereau

Jury

Claire Wardak Univ. de Tours
Peter Janssen KU Leuven
Kristine Krug Uni. of Oxford
Jean-Marc Devaud Univ. Paul Sabatier

Context of the thesis

Key ingredients for stereopsis

- Binocular overlap
- Good visual acuity in both eyes
- Accurate coordination between the eyes in all gaze directions
- Ability of the brain to fuse two slightly different retinal images

Key ingredients for stereopsis

- Binocular overlap
- Good visual acuity in both eyes
- Accurate coordination between the eyes in all gaze directions
- Ability of the brain to fuse two slightly different retinal images

Parker, 2007

in most visual areas

Temporal gradients

in most visual areas

Spatial gradients

in most visual areas

Temporal gradients

Spatial gradients

in most visual areas

Aims of the thesis

Temporal gradients

- Temporal integration of binocular disparities
 - → Barely studied: Main focus on 2D motion but some differences might exist

Spatial gradients

- Spatial integration of binocular disparities
 - →Influence of natural statistics
 - → Link with perception?

Monkey fMRI

Methodological developments

Monkey fMRI

electrophysiology

fMRI

Monkey fMRI: Development

Macaque conditioning

Experimental setup

Pre-processing and data analysis

ORIGINAL ARTICLE

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoit R. Cottereau^{1,2}, Andrew T. Smith³, Samy Rima^{1,2}, Denis Fize⁴, Yseult Héjja-Brichard^{1,2}, Luc Renaud^{5,6}, Camille Lejards^{1,2}, Nathalie Vayssière^{1,2}, Yves Trotter^{1,2} and Jean-Baptiste Durand^{1,2}

ORIGINAL ARTICLE

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoit R. Cottereau^{1,2}, Andrew T. Smith³, Samy Rima^{1,2}, Denis Fize⁴, Yseult Héjja-Brichard^{1,2}, Luc Renaud^{5,6}, Camille Lejards^{1,2}, Nathalie Vayssière^{1,2}, Yves Trotter^{1,2} and Jean-Baptiste Durand^{1,2}

ORIGINAL ARTICLE

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoit R. Cottereau^{1,2}, Andrew T. Smith³, Samy Rima^{1,2}, Denis Fize⁴, Yseult Héjja-Brichard^{1,2}, Luc Renaud^{5,6}, Camille Lejards^{1,2}, Nathalie Vayssière^{1,2}, Yves Trotter^{1,2} and Jean-Baptiste Durand^{1,2}

ORIGINAL ARTICLE

Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

Benoit R. Cottereau^{1,2}, Andrew T. Smith³, Samy Rima^{1,2}, Denis Fize⁴, Yseult Héjja-Brichard^{1,2}, Luc Renaud^{5,6}, Camille Lejards^{1,2}, Nathalie Vayssière^{1,2}, Yves Trotter^{1,2} and Jean-Baptiste Durand^{1,2}

De Castro et al., in revision

Stereomotion

Stereomotion processing in the non-human primate brain

Héjja-Brichard, Y., Rima, S., Rapha, E., Durand, J.-B., Cottereau, B.R. (2020)

2D vs 3D motion

2D motion has been widely studied in MT/hMT+

Huk & Heeger, 2002; Maunsell & Newton, 1987

 Much less is known about 3D motion processing Most studies focused on MT/hMT+

Rokers et al., 2009 (ROI-based analysis)
Sanaka & DeAngelis, 2014; Czuba et al., 2014

=> Limited understanding of 3D motion despite its ecological relevance

Stereomotion: CDOT processing

Likova & Tyler, 2007

Stereomotion: CDOT processing

→ CSM area in macaque?

Likova & Tyler, 2007

Kolster et al., 2014

Stereomotion: CDOT processing

→ CSM area in macaque?

Likova & Tyler, 2007

Kolster et al., 2014

2 macaques 43 and 47 runs BOLD signal

Rima et al. (minor revisions)

Projection on the individual surfaces

*Caret software

Projection on the individual surfaces

*Caret software

Projection overlap

Projection on the F99 template

ROI analyses in the volume

ROI-based analyses

ROI-based analyses

Monocular motion sensitivity

- Three areas with significant activations for CSM: CSMsts, CSMITG, CSMPPC
- Tendency observed in the MT cluster (FST, MSTv)
- One area was found to respond exclusively to stereomotion

- Three areas with significant activations for CSM: CSMsts, CSMITG, CSMPPC
- Tendency observed in the MT cluster (FST, MSTv)
- One area was found to respond exclusively to stereomotion

CSMSTS

CSM

Likova & Tyler 2007

- Three areas with significant activations for CSM: CSMsts, CSMITG, CSMPPC
- Tendency observed in the MT cluster (FST, MSTv)
- One area was found to respond exclusively to stereomotion

CSMSTS

CSMITG

CSM

LO?

Likova & Tyler 2007 Rokers et al., 2009

- Three areas with significant activations for CSM: CSMsts, CSMITG, CSMPPC
- Tendency observed in the MT cluster (FST, MSTv)
- One area was found to respond exclusively to stereomotion

CSMSTS

CSMITG

CSMPPC

CSM

LO?

Likova & Tyler 2007 Rokers et al., 2009 Kaestner et al. 2019

Spatial integration of binocular disparities and orientation biases

Spatial gradients processing

 The brain network responding to spatial gradients is well known in macaques

Janssen et al., 1999, 2000, 2001; Taira et al., 2000; Tsutsui et al., 2002; Hinkle & Connor, 2002; Nguyenkin & DeAngelis, 2003

 And so is the involvement of some human areas (V3A, V3B/KO, hMT+, LOC)

> Chandrasekaran et al., 2007; Murphy, Ban, Welchman, 2013; Ban & Welchman, 2015

Spatial gradients processing

 The brain network responding to spatial gradients is well known in macaques

Janssen et al., 1999, 2000, 2001; Taira et al., 2000; Tsutsui et al., 2002; Hinkle & Connor, 2002; Nguyenkin & DeAngelis, 2003

 And so is the involvement of some human areas (V3A, V3B/KO, hMT+, LOC)

> Chandrasekaran et al., 2007; Murphy, Ban, Welchman, 2013; Ban & Welchman, 2015

What about an influence of natural statistics within those networks?

Horizontal disparity

Sprague et al., 2015

pazilemon Cell count Cell count Horizontal disparity (°)

Horizontal disparity

Sprague et al., 2015

Horizontal disparity

Sprague et al., 2015

Visual perception and natural statistics

Are statistical biases reflected at the level of visual perception in macaque?

Measuring corresponding points

Experimental procedure adapted from Cooper E. et al., 2011

Corresponding points location

Corresponding points location

Corresponding points location

From perception to cortical networks?

Is there an influence of natural statistics within the cortical networks known to process binocular disparities?

2 macaques BOLD signal 49 runs (26 'S' and 23 'T') 79 runs (33 'S' and 46 'T')

Correlated vs. Decorrelated

Orientation biases?

Orientation biases?

Rima et al. (minor revisions)

Orientation biases?

Rima et al. (minor revisions)

Spatial integration and natural stats?

 Successful adaptation of the experiment to one macaque subject with a tilt reflecting natural statistics

- A cortical network responding to correlated disparities congruent with the literature
- Inconclusive results regarding the possibility of an encoding bias towards more frequent 3D orientations

Discussion

What did we learn about the integration of binocular disparities?

Integration of binocular disparities

Temporal gradients

Spatial gradients

Summary of the main results

- Temporal integration of binocular disparities
 - The case of cyclopean stereomotion
 - → Human and macaque seem to process CSM in a similar manner

Likova & Tyler, 2007; Rokers et al., 2009; Kaestner et al.; 2019

Summary of the main results

- Temporal integration of binocular disparities
 - The case of cyclopean stereomotion
 - → Human and macaque seem to process CSM in a similar manner Likova & Tyler, 2007; Rokers et al., 2009; Kaestner et al.; 2019

- Influence of natural statistics
 - Cortical processing of spatial gradients and 3D orientation biases:
 Nope! or Nope?
 - Visual perception bias and interspecies comparison Cooper and Pettigrew, 1991; Cooper E. et al., 2011

The PIP cluster: An overlap?

Functional dissociation

Retinotopic dissociation

Rima et al., under review

Future directions

- Stereomotion: other cues and fMRI recording
 - A specific role for the area MT?

Sanada & DeAngelis, 2014; Czuba et al., 2014; Joo et al., 2016

Chauhan, Héjja-Brichard, & Cottereau (under review)

Monkey fMRI

Appendix

HRF estimation

Stimuli: full-field counter phasing (10Hz) checkerboards (40°, 16 sectors) displayed at full contrast, for 4s followed by a 30s blank

One scan = 6 cycles of 34 seconds (total duration: 204s)

Subject	α 1	α2	ß ₁	ß ₂	С
M01	2.8572	29.9973	0.9267	2.6957	10.0000
M02	4.7199	24.8772	1.2660	1.3247	6.3917

Results: Projections in the volume

Retinotopy

Evolution of polar angle gradients between V3A and LIPvt

- → robust identification of a succession of gradient reversals
- → borders shared by those visuotopic areas.

Cf. Arcaro et al., 2011

Rima et al., under review

Horopter: Results

Horopter: Observers' characteristics

Optimal shear angle $\vartheta = 2 \tan^{-1} \frac{I}{2h}$

Subject	IOD (cm)	Eyes height (cm)	Optimal shear angle (degrees)	Shear angle all sessions (degrees)
S1	6.15	153.0	2.3028	3.927
S2	6.30	171.5	2.1045	3.5386
S 3	6.55	166.5	2.2537	7.1776
S4	6.15	157.5	2.237	5.7120
S 5	6.70	169.5	2.2645	4.3118
S6	6.90	163.5	2.4176	4.0147
S7	6.03	156.0	2.2144	2.6200
\$8	6.30	169.0	2.1356	5.2106
M1	3.14	38	4.8973	3.01

Selectivity profile along the STS

